\qquad
\qquad

3.9
 Practice A

In Exercises 1 and 2, write a cubic function whose graph is shown.
1.

2.

In Exercises 3-5, use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.
3.

\boldsymbol{x}	1	2	3	4	5	6	7
$\boldsymbol{f}(\boldsymbol{x})$	1	3	7	14	25	41	63

4.

\boldsymbol{x}	-4	-2	0	2	4	6
$\boldsymbol{f}(\boldsymbol{x})$	-3	2	8	15	23	32

5.

\boldsymbol{x}	1	2	3	4	5	6	7
$\boldsymbol{f}(\boldsymbol{x})$	30	20	4	-16	-38	-60	-80

6. The data in the table show the cumulative number of customers during a 6-hour period.

\boldsymbol{x}	1	2	3	4	5	6
$\boldsymbol{f}(\boldsymbol{x})$	2	7	13	20	28	37

a. Find a polynomial model for the data.
b. The store is open 24 hours each day. Does this model seem reasonable for the next 6-hour period? Explain.

