3.9

Practice A

In Exercises 1 and 2, write a cubic function whose graph is shown.

1.

2

In Exercises 3–5, use finite differences to determine the degree of the polynomial function that fits the data. Then use technology to find the polynomial function.

3.

x	1	2	3	4	5	6	7
f(x)	1	3	7	14	25	41	63

4

4.	x	-4	-2	0	2	4	6
	f(x)	-3	2	8	15	23	32

5.

x	1	2	3	4	5	6	7
f(x)	30	20	4	-16	-38	-60	-80

6. The data in the table show the cumulative number of customers during a 6-hour period.

	X	1	2	3	4	5	6
	f(x)	2	7	13	20	28	37

- **a.** Find a polynomial model for the data.
- **b.** The store is open 24 hours each day. Does this model seem reasonable for the next 6-hour period? Explain.