\qquad

3.7 Practice B

In Exercises 1 and 2, describe the transformation of f represented by g. Then graph each function.

1. $f(x)=x^{4}, g(x)=(x-3)^{4}-2$
2. $f(x)=x^{5}, g(x)=(x-1)^{5}+4$

In Exercises 3-6, describe the transformation of f represented by g. Then graph each function.
3. $f(x)=x^{5}, g(x)=-3 x^{5}$
4. $f(x)=x^{4}, g(x)=3 x^{4}+2$
5. $f(x)=x^{4}, g(x)=\frac{1}{3} x^{4}-3$
6. $f(x)=x^{4}, g(x)=\frac{2}{3}(x+3)^{4}$

In Exercises 7 and 8, write a rule for g and then graph each function. Describe the graph of \boldsymbol{g} as a transformation of the graph of \boldsymbol{f}.
7. $f(x)=x^{3}-4 x^{2}+2, g(x)=-\frac{1}{4} f(x)$
8. $f(x)=x^{4}+x+1, g(x)=f(-x)+2$
9. Describe and correct the error in describing the transformation of the graph of $f(x)=x^{4}$ represented by the graph of $g(x)=4 x^{4}+3$.

> The graph of g is a vertical shrink by a factor of $\frac{1}{4}$, followed by a translation 3 units up of the graph of f.

In Exercises 10 and 11, write a rule for g that represents the indicated transformations of the graph of \boldsymbol{f}.
10. $f(x)=x^{3}-3 x^{2}+2$; horizontal stretch by a factor of 3 and a translation 3 units up, followed by a reflection in the x-axis
11. $f(x)=3 x^{5}-x^{3}+5 x^{2}+1$; reflection in the y-axis and a vertical shrink by a factor of $\frac{1}{2}$, followed by a translation 1 unit up
12. The volume V (in cubic inches) of a rectangular box is given by $V=2 x^{3}+9$.
a. The function $W(x)=V\left(\frac{x}{12}\right)$ gives the volume (in cubic feet) of the box when x is measured in inches. Write a rule for W. Find and interpret $W(6)$.
b. The function $Z(x)=W\left(\frac{x}{3}\right)$ gives the volume (in cubic yards) of the box when x is measured in inches. Write a rule for Z.

