3.7

Practice A

In Exercises 1 and 2, describe the transformation of f represented by g. Then graph each function.

1.
$$f(x) = x^3$$
, $g(x) = x^3 - 2$

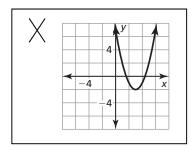
2.
$$f(x) = x^3$$
, $g(x) = (x + 3)^3$

In Exercises 3–6, describe the transformation of f represented by g. Then graph each function.

3.
$$f(x) = x^4$$
, $g(x) = -5x^4$

4.
$$f(x) = x^3$$
, $g(x) = 4x^3 - 3$

5.
$$f(x) = x^5$$
, $g(x) = \frac{2}{3}x^5 - 5$


6.
$$f(x) = x^4$$
, $g(x) = \frac{1}{2}(x-2)^4$

In Exercises 7 and 8, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.

7.
$$f(x) = x^3 + 2$$
, $g(x) = f(x - 1)$

8.
$$f(x) = x^4 - 3x + 1$$
, $g(x) = 2f(x)$

9. Describe and correct the error in graphing the function $g(x) = (x-3)^2 + 2$.

In Exercises 10 and 11, write a rule for g that represents the indicated transformations of the graph of f.

- **10.** $f(x) = x^3 + 5$; translation 2 units right, followed by a reflection in the y-axis
- **11.** $f(x) = x^4 3x + 1$; vertical shrink by a factor of $\frac{1}{3}$, followed by a translation 2 units down
- **12.** The volume V (in cubic yards) of a rectangular box is given by $V = x^3 + 4x + 3$.
 - **a.** The function W(x) = V(3x) gives the volume (in cubic feet) of the box when x is measured in yards. Write a rule for W.
 - **b.** The function Z(x) = W(12x) gives the volume (in cubic inches) of the box when x is measured in yards. Write a rule for Z.