3.6 Practice B

In Exercises 1–4, identify the number of solutions of the polynomial equation. Then find all solutions of the equation.

1.
$$8x^3 + 27 = 0$$

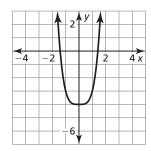
2.
$$4p^5 - 32p^2 = 0$$

$$3. \quad t^8 - t^4 - t^2 + 1 = 0$$

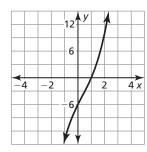
4.
$$x^5 - 9x^3 + 8x^2 - 72 = 0$$

In Exercises 5–8, find all zeros of the polynomial function.

5.
$$h(x) = x^4 - 4x^3 + 3x^2 + 4x - 4$$


6.
$$f(x) = x^4 - 12x^3 + 54x^2 - 108x + 81$$

7.
$$g(x) = x^5 + 4x^4 + x^3 - 14x^2 - 20x - 8$$


8.
$$f(x) = x^5 + 2x^4 - 13x^3 - 26x^2 + 36x + 72$$

In Exercises 9 and 10, determine the number of imaginary zeros for the function with the given degree and graph. Explain your reasoning.

9. Degree: 4

10. Degree: 3

In Exercises 11–13, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.

11. 2,
$$3 + i$$

12.
$$2i$$
, $1-i$

13. 3,
$$-\sqrt{7}$$

- **14.** Two zeros of $f(x) = x^3 2x^2 + 9x 18$ are 3i and -3i. Explain why the third zero must be a real number.
- **15.** Use Descartes' Rule of Signs to determine which function has no positive real zeros.

A.
$$f(x) = x^4 - 3x^2 + 6x - 7$$

B.
$$f(x) = x^4 + 2x^2 + 4x - 3$$

C.
$$f(x) = x^4 + x^2 + 10$$

D.
$$f(x) = x^4 + 5x^3 - 9x - 7$$