Practice B

In Exercises 1-6, solve the equation.

1.
$$4x^4 + 12x^3 + 9x^2 = 0$$

3.
$$16q^4 - 8q^2 + 1 = 0$$

5.
$$p^3 - 25p = 50 - 2p^2$$

2.
$$6h^5 = 12h^3$$

4.
$$w^4 + 81 = 18w^2$$

6.
$$y^3 - 8y^2 = 9y - 72$$

In Exercises 7–10, find the zeros of the function. Then sketch a graph of the function.

7.
$$f(x) = -5x^4 + 20x^3 + 60x^2$$
 8. $g(x) = -x^3 - x^2 + 30x$

$$h(x) = x^3 + x^2 + 4x + 4$$

8.
$$g(x) = -x^3 - x^2 + 30x$$

9.
$$h(x) = x^3 + x^2 - 4x - 4$$
 10. $f(x) = x^3 - 4x^2 - 9x + 36$

11. According to the Rational Root Theorem, which is *not* a possible zero of the function $f(x) = 24x^4 - 16x^3 + 21x - 27$?

A.
$$-\frac{3}{8}$$

C.
$$-\frac{1}{3}$$

D.
$$-\frac{9}{4}$$

12. Describe and correct the error in listing the possible rational zeros of the function.

$$f(x) = 2x^3 + 5x^2 - 2x - 6$$

Possible zeros: ± 1 , ± 2 , ± 3 , ± 6

In Exercises 13 and 14, find all the real solutions of the equation.

13.
$$2x^3 - 3x^2 + 18x - 27 = 0$$

14.
$$x^3 - 5x^2 - 2x + 24 = 0$$

- **15.** Write a third or fourth degree polynomial function that has zeros at $\pm \frac{7}{5}$. Justify your answer.
- **16.** The sidewalk hazard marker is shaped like a pyramid, with a height 2 centimeters greater than the length of each side of its square base. The volume of the marker is 297 cubic centimeters. What are the dimensions of the sidewalk hazard marker?

