\qquad

3.5 Practice B

In Exercises 1-6, solve the equation.

1. $4 x^{4}+12 x^{3}+9 x^{2}=0$
2. $6 h^{5}=12 h^{3}$
3. $16 q^{4}-8 q^{2}+1=0$
4. $w^{4}+81=18 w^{2}$
5. $p^{3}-25 p=50-2 p^{2}$
6. $y^{3}-8 y^{2}=9 y-72$

In Exercises 7-10, find the zeros of the function. Then sketch a graph of the function.
7. $f(x)=-5 x^{4}+20 x^{3}+60 x^{2}$
8. $g(x)=-x^{3}-x^{2}+30 x$
9. $h(x)=x^{3}+x^{2}-4 x-4$
10. $f(x)=x^{3}-4 x^{2}-9 x+36$
11. According to the Rational Root Theorem, which is not a possible zero of the function $f(x)=24 x^{4}-16 x^{3}+21 x-27$?
A. $-\frac{3}{8}$
B. -2
C. $-\frac{1}{3}$
D. $-\frac{9}{4}$
12. Describe and correct the error in listing the possible rational zeros of the function.

$$
X f(x)=2 x^{3}+5 x^{2}-2 x-6
$$

Possible zeros: $\pm 1, \pm 2, \pm 3, \pm 6$

In Exercises 13 and 14, find all the real solutions of the equation.

13. $2 x^{3}-3 x^{2}+18 x-27=0$
14. $x^{3}-5 x^{2}-2 x+24=0$
15. Write a third or fourth degree polynomial function that has zeros at $\pm \frac{7}{5}$. Justify your answer.
16. The sidewalk hazard marker is shaped like a pyramid, with a height 2 centimeters greater than the length of each side of its square base. The volume of the marker is 297 cubic centimeters. What are the dimensions of the sidewalk hazard marker?

