Practice B

In Exercises 1 and 2, find the sum.

1.
$$(8x^7 - 6x^5 + 4x^3 - 6x) + (15x^6 + 4x^5 - 3x^3 + 2)$$

2.
$$(8x^4 - 2x^3 + 9x^2 + 7x + 14) + (6x^4 - 5x^3 - 9x^2 - 11x - 9)$$

In Exercises 3 and 4, find the difference.

3.
$$(9x^5 + 5x^4 - 9x^2 + 10x) - (12x^5 + 2x^4 - x^2 - 9)$$

4.
$$(12x^4 - 6x^2 + 2x + 14) - (3x^4 - 5x^3 + 9x + 3)$$

In Exercises 5-8, find the product.

5.
$$(x^2 - 7x - 2)(x^2 - 3x - 6)$$

6.
$$(2x^2 + 3x - 1)(-5x^2 - 2x + 4)$$

7.
$$(4x^2 - 3x + 6)(x^2 - 2x + 2)$$

8.
$$(3x^2 - 6x - 5)(x^4 + 2x^2 + 5x)$$

9. Describe and correct the error in performing the operation.

$$4x^{2}(3x^{4}-2x^{3}+7)=12x^{8}-8x^{6}+28x^{2}$$

In Exercises 10-13, find the product of the binomials.

10.
$$(x-3)(2x+2)(3x-1)$$

11.
$$(2x + 3)(x - 5)(4x + 1)$$

12.
$$(2x-1)(3-2x)(4x+5)$$

13.
$$(5-2x)(2-x)(4x+3)$$

In Exercises 14–16, find the product.

14.
$$(3x + 5)(3x - 5)$$
 15. $(6t + 7)^2$

15.
$$(6t + 7)^2$$

16.
$$(pq + 2)^2$$

17. A rectangular pool has a level floor. The length of the pool is (3x - 1) feet, the width of the pool is (x + 6) feet, and the depth of the pool is (x + 6) feet.

- **a.** Write an expression for the volume of the pool as a product of binomials.
- **b.** Write an expression for the volume of the pool as a polynomial in standard form.
- **18.** Use Pascal's Triangle to expand $(2m 5)^5$.
- **19.** Use the Binomial Theorem to write the binomial expansion of $(3s + t)^3$.