Practice A

In Exercises 1-4, decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1.
$$f(x) = 4x^2 - 3x + 5x^3 - 7$$

2.
$$h(x) = 5x^3 - 7x^{-2} + x - 1$$

3.
$$g(x) = x^4 - \frac{1}{3}x^2 + 10 - 4x^3 + 2x$$
 4. $f(x) = 8x^2 - \sqrt{3}x + 2$

4.
$$f(x) = 8x^2 - \sqrt{3}x + 2$$

In Exercises 5–7, evaluate the function for the given value of x.

5.
$$f(x) = -2x^4 + x^3 + 5x^2 - 3x - 7$$
; $x = -1$

6.
$$g(x) = 5x^4 - 2x^3 + 9x - 10$$
; $x = -6$

7.
$$h(x) = x^5 - 4x^3 + 3x^2 + 11x - 8$$
; $x = 7$

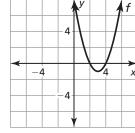
In Exercises 8 and 9, describe the end behavior of the graph of the function.

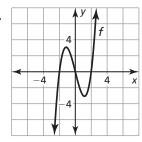
8.
$$g(x) = 6x^4 - 3x^3 + 12x^2 + 8x + 2$$

9.
$$h(x) = -5x^9 + 6x^7 - 5x^4 + x^2 - 1$$

In Exercises 10-13, graph the polynomial function.

10.
$$q(x) = x^4 - 2$$


11.
$$h(x) = x^3 - 2x + 3$$


12.
$$k(x) = 2x^2 + 3 - x^3$$

13.
$$f(x) = x^5 - 2x^3 + 1$$

In Exercises 14 and 15, describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0, and (c) f(x) < 0.

16. Suppose $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to +\infty$. Describe the degree and leading coefficient of the function.