\qquad
\qquad

6.3
 Practice A

In Exercises 1 and 2, tell whether the points appear to represent a linear function, an exponential function, or neither.
1.

2.

In Exercises 3-6, plot the points. Tell whether the points appear to represent a linear function, an exponential function, or neither.
3. $(-3,9),(-2,1),(-1,0),(0,1),(1,9)$
4. $(-4,-2),(-2,-1),(0,0),(2,1),(4,2)$
5. $(-3,-9),(-2,-6),(-1,3),(0,2),(1,3)$
6. $\left(-2, \frac{1}{4}\right),\left(-1, \frac{1}{2}\right),(0,1),(1,2),(2,4)$
7. The table shows the demand y (in thousands) for a certain commodity, where x is the number of the month of the year.

Number of month, \boldsymbol{x}	1	2	3	4	5	6
Demand (in thousands), \boldsymbol{y}	512	256	128	64	32	16

a. Plot the given ordered pairs from above. Let x be the independent variable.

Then determine the type of function that best represents this situation.
b. Write a function in standard form that models the data.
c. Use the function from part (b) to find the demand for the commodity during August.

