\qquad
\qquad

6.4 Practice B

In Exercises 1-3, find the sum or difference.

1. $\frac{x}{25 x^{2}}-\frac{5}{25 x^{2}}$
2. $\frac{2 x^{2}}{x+6}+\frac{8 x}{x+6}$
3. $\frac{3 x}{x-4}-\frac{12}{x-4}$

In Exercises 4-7, find the least common multiple of the expressions.
4. $36 x^{2}, 9 x^{2}-18 x$
5. $x^{2}-100, x-10$
6. $25 x^{2}-4,3 x^{2}-10 x-8$
7. $x^{2}+7 x-18, x+9$
8. Describe and correct the error in finding and simplifying the sum.

$$
X \frac{4}{7 x}+\frac{5}{x^{3}}=\frac{4\left(x^{3}\right)}{7 x\left(x^{3}\right)}+\frac{5(7 x)}{x^{3}(7 x)}=\frac{4 x^{3}+35 x}{7 x^{4}}
$$

In Exercises 9-12, find the sum or difference.
9. $\frac{7}{x-5}+\frac{4 x}{x+1}$
10. $\frac{7}{x^{2}-5 x-24}+\frac{3}{x-8}$
11. $\frac{x^{2}-3}{x^{2}-6 x-16}-\frac{x+5}{x+2}$
12. $\frac{x-2}{x-3}+\frac{3}{x}+\frac{6 x}{2 x+1}$

In Exercises 13 and 14, tell whether the statement is always, sometimes, or never true. Explain.
13. The LCD of two rational functions is one of the denominators when the other denominator is a factor.
14. The LCD of two rational functions will have a degree equal to that of the denominator with the higher degree.

In Exercises 15-18, rewrite the function in the form $g(x)=\frac{a}{x-h}+k$.
Graph the function. Describe the graph of g as a transformation of the graph
of $f(x)=\frac{a}{x}$.
15. $g(x)=\frac{5 x+3}{x+4}$
16. $g(x)=\frac{9 x}{x+12}$
17. $g(x)=\frac{5 x-4}{x}$
18. $g(x)=\frac{8 x+13}{x-6}$

