$\qquad$

### 5.5 Practice B

## In Exercises 1-6, solve the equation.

1. $9^{3 x-5}=81^{3 x+2}$
2. $7^{x}=32$
3. $9^{3 x+6}=\left(\frac{1}{3}\right)^{8-x}$
4. $6^{4 x}=13$
5. $2 e^{3 x}+6=10$
6. $4 e^{2 x}-7=1$
7. Fifty grams of radium are stored in a container. The amount $R$ (in grams) of radium present after $t$ years can be modeled by $R=50 e^{-0.00043 t}$.
a. After how many years will only 20 grams of radium be present?
b. Seventy-five grams of radium are stored in a different container. The amount $R$ (in grams) of radium present after $t$ years can be modeled by $R=75 e^{-0.00043 t}$. Will it take more years or fewer years for only 20 grams of the radium in this container to be present, compared to the answer in part (a)? Explain.

## In Exercises 8-13, solve the equation.

8. $\ln (5 x-2)=\ln (x+6)$
9. $\log (3 x+5)=\log 6$
10. $\log _{2}(3 x+12)=4$
11. $\log _{3}(3 x+7)=\log _{3}(10 x)$
12. $\log _{2}\left(x^{2}-2 x+1\right)=4$

In Exercises 14-17, solve the equation. Check for extraneous solutions.
14. $\ln x+\ln (x-2)=5$
15. $\log _{5} 2 x^{2}+\log _{5} 8=2$
16. $\log _{3}(-x)+\log _{3}(x+8)=2$
17. $\log _{2}(x+2)+\log _{2}(x+5)=4$

## In Exercises 18-20, solve the inequality.

18. $e^{x-2}<8$
19. $\ln x>5$
20. $-2 \log _{3} x+2 \leq 10$
21. You deposit $\$ 2000$ in Account A, which pays $2.25 \%$ annual interest compounded monthly. You deposit another \$2000 in Account B, which pays 3\% annual interest compounded monthly. When is the sum of the balance in both accounts at least $\$ 5000$ ?
