\qquad

5.4 Practice B

In Exercises 1-3, use $\log _{5} 3 \approx 0.683$ and $\log _{5} 6 \approx 1.113$ to evaluate the logarithm.

1. $\log _{5} 81$
2. $\log _{5} \frac{1}{6}$
3. $\log _{5} \frac{1}{2}$

In Exercises 4-6, expand the logarithmic expression.

4. $\log _{3} 12 x^{7}$
5. $\log _{6} \frac{5 x^{2}}{y^{3}}$
6. $\log _{8} 6 \sqrt{x y}$
7. Describe and correct the error in expanding the logarithmic expression.

$$
\chi \ln \sqrt[3]{x y}=\frac{1}{3} \ln x+\ln y
$$

In Exercises 8-11, condense the logarithmic expression.

8. $5 \log _{9} x-\log _{9} 4$
9. $\log _{8} 5+\frac{1}{4} \log _{8} x$
10. $2 \ln 4+5 \ln x+3 \ln y$
11. $\log _{6} 9+2 \log _{6} \frac{1}{3}-3 \log _{6} x$

In Exercises 12-14, use the change-of-base formula to evaluate the logarithm.
12. $\log _{8} 15$
13. $\log _{3} 30$
14. $\log _{4} \frac{8}{17}$
15. Your friend claims you can use the change-of-base formula to write the expression $\frac{\ln y}{\ln 3}$ as a logarithm with base 3. Is your friend correct? Explain your reasoning.
16. For a sound with intensity I (in watts per square meter), the loudness $L(I)$ of the sound (in decibels) is given by the function $L(I)=10 \log \frac{I}{I_{0}}$, where I_{0} is the intensity of a barely audible sound (about 10^{-12} watts per square meter). The bass guitar player in a band turns up the volume of the speaker so that the intensity of the sound triples. By how many decibels does the loudness increase?

