\qquad

5.4 Practice A

In Exercises 1-3, use $\log _{5} 3 \approx 0.683$ and $\log _{5} 6 \approx 1.113$ to evaluate the logarithm.

1. $\log _{5} 2$
2. $\log _{5} 18$
3. $\log _{5} 9$

In Exercises 4-6, expand the logarithmic expression.
4. $\log _{2} 5 x$
5. $\log 7 x^{4}$
6. $\log _{6} \frac{2 x}{y}$
7. Describe and correct the error in expanding the logarithmic expression.

$$
\chi \log _{4} 3 x=3 \log _{4} x
$$

In Exercises 8-11, condense the logarithmic expression.

8. $\log _{7} 3-\log _{7} 5$
9. $\log 10-\log 5$
10. $3 \ln x+9 \ln y$
11. $\log _{2} 9+\frac{1}{2} \log _{2} y$

In Exercises 12-14, use the change-of-base formula to evaluate the logarithm.
12. $\log _{5} 3$
13. $\log _{2} 11$
14. $\log _{6} 10$
15. Your friend claims that you can use the change-of-base formula to write the expression $\ln x$ as a common logarithm. Is your friend correct? Explain your reasoning.
16. For a sound with intensity I (in watts per square meter), the loudness $L(I)$ of the sound (in decibels) is given by the function $L(I)=10 \log \frac{I}{I_{0}}$, where I_{0} is the intensity of a barely audible sound (about 10^{-12} watts per square meter). The sound of a coach's whistle is five times greater than the intensity of the referee's whistle. Find the difference in the decibel levels of the sounds made by the coach and the referee.

