\qquad
\qquad

5.3 Practice B

In Exercises 1-8, describe the transformation of f represented by g. Then graph each function.

1. $f(x)=e^{x}, g(x)=e^{x}-4$
2. $f(x)=4^{x}, g(x)=4^{x+2}$
3. $f(x)=e^{-x}, g(x)=e^{-x}-5$
4. $f(x)=\left(\frac{1}{3}\right)^{x}, g(x)=\left(\frac{1}{3}\right)^{x}+2$
5. $f(x)=3^{x}, g(x)=3^{2 x}-1$
6. $f(x)=e^{x}, g(x)=-e^{x+2}$
7. $f(x)=e^{-x}, g(x)=e^{-4 x+1}$
8. $f(x)=\left(\frac{1}{3}\right)^{x}, g(x)=\left(\frac{1}{3}\right)^{x-2}+3$
9. Describe and correct the error in graphing the function $f(x)=2^{x+3}$.

In Exercises 10 and 11, describe the transformation of f represented by g. Then graph each function.
10. $f(x)=\log _{4} x, g(x)=\log _{4}(x-2)+4$
11. $f(x)=\log _{1 / 3} x, g(x)=-\log _{1 / 3}(-x)$

In Exercises 12-14, write a rule for g that represents the indicated transformation of the graph of \boldsymbol{f}.
12. $f(x)=\left(\frac{2}{5}\right)^{x}$; reflection in the y-axis, followed by a horizontal shrink by a factor of 2 and a translation 4 units down
13. $f(x)=e^{-x}$; translation 2 units left and 3 units up, followed by a vertical stretch by a factor of 2
14. $f(x)=\log _{12} x$; translation 5 units right and 2 units down, followed by a reflection in the x-axis

