Practice B

In Exercises 1–8, describe the transformation of f represented by g. Then graph each function.

1.
$$f(x) = e^x, g(x) = e^x - 4$$

2.
$$f(x) = 4^x, g(x) = 4^{x+2}$$

3.
$$f(x) = e^{-x}, g(x) = e^{-x} - 5$$

4.
$$f(x) = \left(\frac{1}{3}\right)^x, g(x) = \left(\frac{1}{3}\right)^x + 2$$

5.
$$f(x) = 3^x, g(x) = 3^{2x} - 1$$

6.
$$f(x) = e^x, g(x) = -e^{x+2}$$

7.
$$f(x) = e^{-x}, g(x) = e^{-4x+1}$$

8.
$$f(x) = \left(\frac{1}{3}\right)^x, g(x) = \left(\frac{1}{3}\right)^{x-2} + 3$$

9. Describe and correct the error in graphing the function $f(x) = 2^{x+3}$.

In Exercises 10 and 11, describe the transformation of f represented by g. Then graph each function.

10.
$$f(x) = \log_4 x, g(x) = \log_4(x-2) + 4$$
 11. $f(x) = \log_{1/3} x, g(x) = -\log_{1/3}(-x)$

11.
$$f(x) = \log_{1/3} x, g(x) = -\log_{1/3}(-x)$$

In Exercises 12–14, write a rule for g that represents the indicated transformation of the graph of f.

- **12.** $f(x) = \left(\frac{2}{5}\right)^x$; reflection in the y-axis, followed by a horizontal shrink by a factor of 2 and a translation 4 units down
- **13.** $f(x) = e^{-x}$; translation 2 units left and 3 units up, followed by a vertical stretch by a factor of 2
- **14.** $f(x) = \log_{12} x$; translation 5 units right and 2 units down, followed by a reflection in the x-axis