Practice A

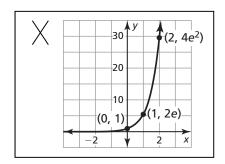
In Exercises 1–8, describe the transformation of f represented by g. Then graph each function.

1.
$$f(x) = 2^x, g(x) = 2^x + 3$$

2.
$$f(x) = e^x, g(x) = e^x - 2$$

3.
$$f(x) = 3^x, g(x) = 3^{x-1}$$

4.
$$f(x) = e^{-x}, g(x) = e^{-x} + 4$$


5.
$$f(x) = e^x, g(x) = e^{3x}$$

6.
$$f(x) = e^x, g(x) = \frac{3}{2}e^x$$

7.
$$f(x) = 3^x, g(x) = -3^{x+2}$$

8.
$$f(x) = e^{-x}, g(x) = 2e^{-5x}$$

9. Describe and correct the error in graphing the function $f(x) = 2e^x$.

In Exercises 10 and 11, describe the transformation of f represented by g. Then graph each function.

10.
$$f(x) = \log_2 x, g(x) = 4 \log_2 x - 1$$

10.
$$f(x) = \log_2 x, g(x) = 4 \log_2 x - 1$$
 11. $f(x) = \log_{1/2} x, g(x) = -\log_{1/2} x + 3$

In Exercises 12–15, write a rule for g that represents the indicated transformation of the graph of f.

- **12.** $f(x) = 3^x$; reflection in the x-axis, followed by a translation 3 units left and 1 unit down
- **13.** $f(x) = e^x$; vertical shrink by a factor of $\frac{1}{4}$, followed by a translation 5 units up
- **14.** $f(x) = \log_8 x$; reflection in the y-axis, followed by a translation 4 units left
- **15.** $f(x) = \log_{1/6} x$; vertical stretch by a factor of 9, followed by translations 2 units right and 3 units down