\qquad

5.3 Practice A

In Exercises 1-8, describe the transformation of f represented by g. Then graph each function.

1. $f(x)=2^{x}, g(x)=2^{x}+3$
2. $f(x)=e^{x}, g(x)=e^{x}-2$
3. $f(x)=3^{x}, g(x)=3^{x-1}$
4. $f(x)=e^{-x}, g(x)=e^{-x}+4$
5. $f(x)=e^{x}, g(x)=e^{3 x}$
6. $f(x)=e^{x}, g(x)=\frac{3}{2} e^{x}$
7. $f(x)=3^{x}, g(x)=-3^{x+2}$
8. $f(x)=e^{-x}, g(x)=2 e^{-5 x}$
9. Describe and correct the error in graphing the function $f(x)=2 e^{x}$.

In Exercises 10 and 11, describe the transformation of f represented by g. Then graph each function.
10. $f(x)=\log _{2} x, g(x)=4 \log _{2} x-1$
11. $f(x)=\log _{1 / 2} x, g(x)=-\log _{1 / 2} x+3$

In Exercises 12-15, write a rule for g that represents the indicated transformation of the graph of \boldsymbol{f}.
12. $f(x)=3^{x}$; reflection in the x-axis, followed by a translation 3 units left and 1 unit down
13. $f(x)=e^{x}$; vertical shrink by a factor of $\frac{1}{4}$, followed by a translation 5 units up
14. $f(x)=\log _{8} x$; reflection in the y-axis, followed by a translation 4 units left
15. $f(x)=\log _{1 / 6} x$; vertical stretch by a factor of 9 , followed by translations 2 units right and 3 units down

