\qquad

5.2 Practice A

In Exercises 1-3, rewrite the equation in exponential form.

1. $\log _{2} 8=3$
2. $\log _{7} 7=1$
3. $\log _{5} 25=2$

In Exercises 4-6, rewrite the equation in logarithmic form.
4. $4^{2}=16$
5. $5^{0}=1$
6. $6^{-1}=\frac{1}{6}$

In Exercises 7-12, evaluate the logarithm.
7. $\log _{2} 16$
8. $\log _{5} 125$
9. $\log _{6} 6$
10. $\log _{5} \frac{1}{5}$
11. $\log _{9} 1$
12. $\log _{2} \frac{1}{8}$

In Exercises 13-15, evaluate the logarithm using a calculator. Round your answer to three decimal places.
13. $\log 5$
14. $\ln 14$
15. $\log \frac{1}{4}$
16. The decibel level D of sound is given by the equation $D=10 \log \left(\frac{I}{10^{-12}}\right)$, where I is the intensity of the sound. What is the decibel level when the intensity of the sound is 10^{-9} ?

In Exercises 17-19, simply the expression.

17. $5^{\log _{5} x}$
18. $8^{\log _{8} 2 x}$
19. $\log _{4} 4^{3 x}$

In Exercises 20-25, find the inverse of the function.
20. $y=1.1^{x}$
21. $y=3^{x}$
22. $y=\log _{3} x$
23. $y=\log \left(\frac{1}{3} x\right)$
24. $y=\ln (3 x)$
25. $y=e^{5 x}$
26. The wind speed s (in miles per hour) near the center of a tornado can be modeled by $s=93 \log d+65$, where d is the distance (in miles) that the tornado travels.
a. A tornado traveled 35 miles. Estimate the wind speed near the center of the tornado.
b. The wind speed near the center of a tornado was 150 miles per hour. Find the distance that the tornado traveled.

