5.1 Practice B

In Exercises 1–6, simplify the expression.

1.
$$e^{-9} \cdot e^7$$
2. $\frac{27e^4}{18e^7}$ 3. $(5e^{-4x})^3$ 4. $\sqrt{20e^{8x}}$ 5. $\sqrt[3]{64e^{9x}}$ 6. $e^{2x} \cdot e^5 \cdot e^{x-2}$

7. Describe and correct the error in simplifying the expression.

$$\left(2e^{-3x}\right)^4 = \frac{1}{16e^{12x}}$$

In Exercises 8–10, tell whether the function represents *exponential growth* or *exponential decay*. Then graph the function.

8.
$$y = 2e^{3x}$$
 9. $y = 0.5e^{-2x}$ **10.** $y = 0.4e^{0.5x}$

In Exercises 11–13, use the properties of exponents to rewrite the function in the form $y = a(1 + r)^{t}$ or $y = a(1 - r)^{t}$. Then find the percent rate of change.

11.
$$y = e^{0.25x}$$
 12. $y = 3e^{-0.65x}$ **13.** $y = 0.25e^{0.9x}$

In Exercises 14–16, use a table of values or a graphing calculator to graph the function. Then identify the domain and range.

14.
$$y = e^{x-4}$$
 15. $y = 4e^x - 1$ **16.** $y = 2e^x + 5$

- **17.** You invest \$5000 in an account to save for college.
 - **a.** Option 1 pays 4% annual interest compounded monthly. What would be the balance in the account after 2 years?
 - **b.** Option 2 pays 4% annual interest compounded continuously. What would be the balance in the account after 2 years?
 - c. What is the difference between the two options after 10 years?
 - d. How would your answer to part (c) change if you invested \$50,000?