\qquad

5.1 Practice B

In Exercises 1-6, simplify the expression.

1. $e^{-9} \cdot e^{7}$
2. $\frac{27 e^{4}}{18 e^{7}}$
3. $\left(5 e^{-4 x}\right)^{3}$
4. $\sqrt{20 e^{8 x}}$
5. $\sqrt[3]{64 e^{9 x}}$
6. $e^{2 x} \cdot e^{5} \cdot e^{x-2}$
7. Describe and correct the error in simplifying the expression.

$$
X\left(2 e^{-3 x}\right)^{4}=\frac{1}{16 e^{12 x}}
$$

In Exercises 8-10, tell whether the function represents exponential growth or exponential decay. Then graph the function.
8. $y=2 e^{3 x}$
9. $y=0.5 e^{-2 x}$
10. $y=0.4 e^{0.5 x}$

In Exercises 11-13, use the properties of exponents to rewrite the function in the form $y=a(1+r)^{t}$ or $y=a(1-r)^{t}$. Then find the percent rate of change.
11. $y=e^{0.25 x}$
12. $y=3 e^{-0.65 x}$
13. $y=0.25 e^{0.9 x}$

In Exercises 14-16, use a table of values or a graphing calculator to graph the function. Then identify the domain and range.
14. $y=e^{x-4}$
15. $y=4 e^{x}-1$
16. $y=2 e^{x}+5$
17. You invest $\$ 5000$ in an account to save for college.
a. Option 1 pays 4% annual interest compounded monthly. What would be the balance in the account after 2 years?
b. Option 2 pays 4% annual interest compounded continuously. What would be the balance in the account after 2 years?
c. What is the difference between the two options after 10 years?
d. How would your answer to part (c) change if you invested $\$ 50,000$?

