5.1 Practice A

In Exercises 1–6, simplify the expression.

- 1. $e^2 \cdot e^5$ 2. $e^{-3} \cdot e^8$ 3. $\frac{12e^5}{36e^2}$

 4. $\frac{15e^4}{3e^9}$ 5. $(3e^{3x})^2$ 6. $\sqrt{16e^{10x}}$
- 7. Describe and correct the error in simplifying the expression.

$$\begin{pmatrix} (2e^{3x})^2 = (2)^2 (e^{3x})^2 \\ = 4e^{9x^2} \end{pmatrix}$$

In Exercises 8–10, tell whether the function represents *exponential growth* or *exponential decay*. Then graph the function.

8.
$$y = e^{4x}$$
 9. $y = e^{-x}$ **10.** $y = 4e^{-2x}$

In Exercises 11–13, use the properties of exponents to rewrite the function in the form $y = a(1 + r)^{t}$ or $y = a(1 - r)^{t}$. Then find the percent rate of change.

11.
$$y = e^{-0.5x}$$
 12. $y = 2e^{-0.2x}$ **13.** $y = 5e^{0.6x}$

In Exercises 14–16, use a table of values or a graphing calculator to graph the function. Then identify the domain and range.

14.
$$y = e^{x-1}$$
 15. $y = e^{x+2}$ **16.** $y = 3e^x + 2$

- **17.** You invest \$4000 in an account to save for college.
 - **a.** Option 1 pays 5% annual interest compounded semi-annually. What would be the balance in the account after 2 years?
 - **b.** Option 2 pays 4.5% annual interest compounded continuously. What would be the balance in the account after 2 years?
 - **c.** At what time *t* (in years) would Option 1 give you \$100 more than Option 2?