\qquad
\qquad

4.6 Practice B

In Exercises 1-3, solve $y=f(x)$ for x. Then find the input(s) when the output is $\mathbf{- 3}$.

1. $f(x)=-\frac{4}{3} x+2$
2. $f(x)=25 x^{4}$
3. $f(x)=(x-3)^{2}-4$

In Exercises 4-6, find the inverse of the function. Then graph the function and its inverse.
4. $f(x)=-3 x+4$
5. $f(x)=-\frac{1}{3} x+1$
6. $f(x)=\frac{2}{5} x-\frac{1}{5}$
7. Describe and correct the error in finding the inverse function.

$$
\begin{aligned}
\chi(x) & =3 x-8 \\
y & =3 x-8 \\
x & =3 y-8 \\
g(x) & =3 x-8
\end{aligned}
$$

In Exercises 8-10, find the inverse function. Then graph the function and its inverse.
8. $f(x)=-9 x^{2}, x \leq 0$
9. $f(x)=(x-1)^{3}$
10. $f(x)=x^{6}, x \leq 0$
11. Find the inverse of the function $f(x)=8 x^{3}$ by switching the roles of x and y and solving for y. Then find the inverse of the function f by using inverse operations in the reverse order. Which method do you prefer? Explain.

In Exercises 12-15, determine whether the functions are inverse functions.
12. $f(x)=6 x+1 ; g(x)=6 x-1$
13. $f(x)=\frac{\sqrt[3]{x-6}}{2} ; g(x)=8 x^{3}+6$
14. $f(x)=\frac{5-x}{2} ; g(x)=5-2 x$
15. $f(x)=4 x^{2}+3 ; g(x)=-\frac{x-3}{4}$
16. The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$, where r is the radius.
a. Find the inverse function. Describe what it represents.
b. Find the radius of a sphere with a volume of 146 cubic meters.

