\qquad

4.6 Practice A

In Exercises 1-3, solve $y=f(x)$ for x. Then find the input(s) when the output is -3 .

1. $f(x)=2 x+3$
2. $f(x)=\frac{1}{3} x-2$
3. $f(x)=8 x^{3}$

In Exercises 4-6, find the inverse of the function. Then graph the function and its inverse.
4. $f(x)=4 x$
5. $f(x)=4 x-1$
6. $f(x)=\frac{1}{2} x-5$
7. Find the inverse of the function $f(x)=\frac{1}{5} x-2$ by switching the roles of x and y and solving for y. Then find the inverse of the function f by using inverse operations in the reverse order. Which method do you prefer? Explain.
8. Determine whether each pair of functions f and g are inverses. Explain your reasoning.
a.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	-3	3	9	15	21

b.

\boldsymbol{x}	1	2	3	4	5
$\boldsymbol{f}(\boldsymbol{x})$	9	7	5	3	1

\boldsymbol{x}	-3	3	0	15	21
$\boldsymbol{g}(\boldsymbol{x})$	-2	-1	0	1	2

\boldsymbol{x}	9	7	5	3	1
$\boldsymbol{g}(\boldsymbol{x})$	1	2	3	4	5

In Exercises 9-11, find the inverse of the function. Then graph the function and its inverse.
9. $f(x)=9 x^{2}, x \geq 0$
10. $f(x)=16 x^{2}, x \leq 0$
11. $f(x)=(x+2)^{3}$

In Exercises 12 and 13, use the graph to determine whether the inverse of \boldsymbol{f} is a function. Explain your reasoning.
12.

13.

