4.6 Practice A

In Exercises 1–3, solve y = f(x) for x. Then find the input(s) when the output is -3.

1.
$$f(x) = 2x + 3$$
 2. $f(x) = \frac{1}{3}x - 2$ **3.** $f(x) = 8x^3$

In Exercises 4–6, find the inverse of the function. Then graph the function and its inverse.

4.
$$f(x) = 4x$$

5. $f(x) = 4x - 1$
6. $f(x) = \frac{1}{2}x - 5$

- 7. Find the inverse of the function $f(x) = \frac{1}{5}x 2$ by switching the roles of x and y and solving for y. Then find the inverse of the function f by using inverse operations in the reverse order. Which method do you prefer? Explain.
- **8.** Determine whether each pair of functions f and g are inverses. Explain your reasoning.

a.	x	-2	-1	0	1	2
	<i>f</i> (<i>x</i>)	-3	3	9	15	21
	x	-3	3	0	15	21
	g(x)	-2	-1	0	1	2

b.	x	1	2	3	4	5
	<i>f</i> (<i>x</i>)	9	7	5	3	1
	x	9	7	5	3	1
	g(x)	1	2	3	4	5

In Exercises 9–11, find the inverse of the function. Then graph the function and its inverse.

9.
$$f(x) = 9x^2, x \ge 0$$
 10. $f(x) = 16x^2, x \le 0$ **11.** $f(x) = (x+2)^3$

In Exercises 12 and 13, use the graph to determine whether the inverse of f is a function. Explain your reasoning.

