\qquad

4.5 Practice B

In Exercises 1 and 2, find $(f+g)(x)$ and $(f-g)(x)$ and state the domain of each. Then evaluate $\boldsymbol{f}+\boldsymbol{g}$ and $\boldsymbol{f} \boldsymbol{- g}$ for the given value of \boldsymbol{x}.

1. $f(x)=\sqrt[3]{4 x} ; g(x)=-9 \sqrt[3]{4 x} ; x=-2$
2. $f(x)=3 x-5 x^{2}-x^{3} ; g(x)=6 x^{2}-4 x ; x=-1$

In Exercises 3-5, find $(f g)(x)$ and $\left(\frac{f}{g}\right)(x)$ and state the domain of each.
Then evaluate $f g$ and $\frac{f}{g}$ for the given value of x.
3. $f(x)=3 x^{3} ; g(x)=\sqrt[3]{x^{2}} ; x=-8$
4. $f(x)=3 x^{2} ; g(x)=5 x^{1 / 4} ; x=16$
5. $f(x)=10 x^{5 / 6} ; g(x)=2 x^{1 / 3} ; x=64$

In Exercises 6 and 7, use a graphing calculator to evaluate $(f+g)(x),(f-g)(x)$, $(f g)(x)$, and $\left(\frac{f}{g}\right)(x)$ when $x=5$. Round your answers to two decimal places.
6. $f(x)=-3 x^{1 / 3} ; g(x)=4 x^{1 / 2}$
7. $f(x)=6 x^{3 / 4} ; g(x)=3 x^{1 / 2}$
8. Describe and correct the error in stating the domain.

$$
\text { Х } f(x)=4 x^{7 / 3} \text { and } g(x)=2 x^{2 / 3}
$$

The domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers.
9. The table shows the outputs of the two functions f and g. Use the table to evaluate $(f+g)(5),(f-g)(0),(f g)(3)$, and $\left(\frac{f}{g}\right)(2)$.

\boldsymbol{x}	0	1	2	3	4	5
$\boldsymbol{f}(\boldsymbol{x})$	18	13	8	3	-2	-7
$\boldsymbol{g}(\boldsymbol{x})$	64	32	16	8	4	2

