4.5 Practice B

In Exercises 1 and 2, find (f + g)(x) and (f - g)(x) and state the domain of each. Then evaluate f + g and f - g for the given value of x.

1.
$$f(x) = \sqrt[3]{4x}; g(x) = -9\sqrt[3]{4x}; x = -2$$

2.
$$f(x) = 3x - 5x^2 - x^3$$
; $g(x) = 6x^2 - 4x$; $x = -1$

In Exercises 3–5, find (fg)(x) and $\left(\frac{f}{g}\right)(x)$ and state the domain of each.

Then evaluate fg and $\frac{f}{g}$ for the given value of x.

3. $f(x) = 3x^3; g(x) = \sqrt[3]{x^2}; x = -8$

4.
$$f(x) = 3x^2$$
; $g(x) = 5x^{1/4}$; $x = 16$

5. $f(x) = 10x^{5/6}; g(x) = 2x^{1/3}; x = 64$

In Exercises 6 and 7, use a graphing calculator to evaluate (f + g)(x), (f - g)(x), (fg)(x), and $\left(\frac{f}{g}\right)(x)$ when x = 5. Round your answers to two decimal places.

6.
$$f(x) = -3x^{1/3}$$
; $g(x) = 4x^{1/2}$
7. $f(x) = 6x^{3/4}$; $g(x) = 3x^{1/2}$

8. Describe and correct the error in stating the domain.

$$f(x) = 4x^{7/3} \text{ and } g(x) = 2x^{2/3}$$

The domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers.

9. The table shows the outputs of the two functions f and g. Use the table to evaluate $(f + g)(5), (f - g)(0), (fg)(3), \text{ and } \left(\frac{f}{g}\right)(2).$

x	0	1	2	3	4	5
<i>f</i> (<i>x</i>)	18	13	8	3	-2	-7
g(x)	64	32	16	8	4	2