4.5

Practice A

In Exercises 1 and 2, find (f + g)(x) and (f - g)(x) and state the domain of each. Then evaluate f + g and f - g for the given value of x.

1

1.
$$f(x) = -3\sqrt[4]{x}$$
; $g(x) = 15\sqrt[4]{x}$; $x = 81$
2. $f(x) = 9x + 2x^2$; $g(x) = x^2 - 3x + 7$; $x =$

In Exercises 3–5, find (fg)(x) and $\left(\frac{f}{g}\right)(x)$ and state the domain of each.

Then evaluate fg and $\frac{f}{g}$ for the given value of x.

3.
$$f(x) = x^2; g(x) = 2\sqrt{x}; x = 9$$

4.
$$f(x) = 10x^3$$
; $g(x) = 4x^{5/3}$; $x = 8$

5.
$$f(x) = 4x^{2/3}; g(x) = 2x^{1/3}; x = -27$$

In Exercises 6 and 7, use a graphing calculator to evaluate (f + g)(x), (f - g)(x), (fg)(x), and $\left(\frac{f}{g}\right)(x)$ when x = 5. Round your answers to two decimal places.

6.
$$f(x) = 5x^3$$
; $g(x) = 20x^{1/4}$
7. $f(x) = 4x^{2/3}$; $g(x) = 16x^{4/3}$

8. Describe and correct the error in stating the domain.

$$\bigwedge f(x) = 4x^{1/2} + 2 \text{ and } g(x) = -4x^{1/2}$$

The domain of $(f + g)(x)$ is all real numbers.

- **9.** The growth of mold in Specimen A can be modeled by $A(t) = \frac{5}{6}t^{2/3}$. The growth of mold in Specimen B can be modeled by $B(t) = \frac{1}{3}t^{2/3}$.
 - **a.** Find (A B)(t).
 - **b.** Explain what the function (A B)(t) represents.