\qquad
\qquad

4.5 Practice A

In Exercises 1 and 2, find $(f+g)(x)$ and $(f-g)(x)$ and state the domain of each. Then evaluate $\boldsymbol{f}+\boldsymbol{g}$ and $\boldsymbol{f} \boldsymbol{- g}$ for the given value of \boldsymbol{x}.

1. $f(x)=-3 \sqrt[4]{x} ; g(x)=15 \sqrt[4]{x} ; x=81$
2. $f(x)=9 x+2 x^{2} ; g(x)=x^{2}-3 x+7 ; x=1$

In Exercises 3-5, find $(f g)(x)$ and $\left(\frac{f}{g}\right)(x)$ and state the domain of each.
Then evaluate $f g$ and $\frac{f}{\boldsymbol{g}}$ for the given value of x.
3. $f(x)=x^{2} ; g(x)=2 \sqrt{x} ; x=9$
4. $f(x)=10 x^{3} ; g(x)=4 x^{5 / 3} ; x=8$
5. $f(x)=4 x^{2 / 3} ; g(x)=2 x^{1 / 3} ; x=-27$

In Exercises 6 and 7, use a graphing calculator to evaluate $(f+g)(x),(f-g)(x)$, $(f g)(x)$, and $\left(\frac{f}{g}\right)(x)$ when $x=5$. Round your answers to two decimal places.
6. $f(x)=5 x^{3} ; g(x)=20 x^{1 / 4}$ 7. $f(x)=4 x^{2 / 3} ; g(x)=16 x^{4 / 3}$
8. Describe and correct the error in stating the domain.

$$
\text { X } f(x)=4 x^{1 / 2}+2 \text { and } g(x)=-4 x^{1 / 2}
$$

The domain of $(f+g)(x)$ is all real numbers.
9. The growth of mold in Specimen A can be modeled by $A(t)=\frac{5}{6} t^{2 / 3}$. The growth of mold in Specimen B can be modeled by $B(t)=\frac{1}{3} t^{2 / 3}$.
a. Find $(A-B)(t)$.
b. Explain what the function $(A-B)(t)$ represents.

