\qquad
\qquad

4.4 Practice B

In Exercises 1-6, solve the equation. Check your solution.

1. $\sqrt[3]{x-14}=-2$
2. $-5 \sqrt{16 x}+17=-8$
3. $\frac{1}{4} \sqrt[3]{2 x}+8=6$
4. $\sqrt{3 x}-\frac{3}{4}=0$
5. $3 \sqrt[5]{x}+9=15$
6. $\sqrt[4]{8 x}-16=-12$

In Exercises 7-12, solve the equation. Check your solution(s).
7. $\sqrt{10 x+24}=x+12$
8. $x+3=\sqrt{\frac{22}{3} x+9}$
9. $\sqrt[4]{2-25 x^{2}}=5 x$
10. $\sqrt{4 x-4}-\sqrt{x+8}=0$
11. $\sqrt[3]{4 x-1}=\sqrt[3]{6 x+5}$
12. $\sqrt{4 x-10}=\sqrt{2 x-13}+1$

In Exercises 13-15, solve the equation. Check your solution(s).

13. $3 x^{2 / 3}-30=18$
14. $(6 x+8)^{1 / 2}-3 x=0$
15. $\left(2 x^{2}+8\right)^{1 / 4}=x$

In Exercises 16-18, solve the inequality.
16. $4 \sqrt{x}+3 \leq 23$
17. $\sqrt{x+10} \geq 6$
18. $-3 \sqrt{x+2}<15$
19. "Hang time" is the time you are suspended in the air during a jump. Your hang time t in seconds is given by the function $t=0.5 \sqrt{h}$, where h is the height (in feet) of the jump. A kite sailor has a hang time of 2.5 seconds. Find the height of the kite sailor's jump.

In Exercises 20-23, solve the nonlinear system. Justify your answer with a graph.
20. $y^{2}=x+2$
$y=x+2$
21. $y^{2}=-x+7$
$y=x-1$
22. $x^{2}+y^{2}=9$
$y=x-3$
23. $x^{2}+y^{2}=16$
$y=x+4$
24. The speed s (in miles per hour) of a car can be given by $s=\sqrt{30 f d}$, where f is the coefficient of friction and d is the stopping distance (in feet). The coefficient of friction for a snowy road is 0.30 . You are driving 20 miles per hour and approaching an intersection. How far away from the intersection must you begin to brake?

