Practice B

In Exercises 1-6, graph the function. Identify the domain and range of the function.

1.
$$g(x) = -\sqrt{x} + 2$$
 2. $f(x) = \sqrt[3]{-4x}$

2.
$$f(x) = \sqrt[3]{-4x}$$

3.
$$f(x) = \frac{1}{4}\sqrt{x+5}$$

4.
$$h(x) = (5x)^{1/2} - 2$$

4.
$$h(x) = (5x)^{1/2} - 2$$
 5. $g(x) = -2(x-3)^{1/3}$ **6.** $h(x) = -\sqrt[5]{x}$

6.
$$h(x) = -\sqrt[5]{x}$$

In Exercises 7–12, describe the transformation of f represented by g. Then graph each function.

7.
$$f(x) = \sqrt{x}$$
; $g(x) = 4\sqrt{x-2}$

8.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = \sqrt[3]{x-5} - 1$

9.
$$f(x) = x^{1/4}$$
; $g(x) = \frac{1}{3}(-x)^{1/4}$

9.
$$f(x) = x^{1/4}$$
; $g(x) = \frac{1}{3}(-x)^{1/4}$ **10.** $f(x) = x^{1/3}$; $g(x) = \frac{1}{2}x^{1/3} - 3$

11.
$$f(x) = \sqrt[4]{x}$$
; $g(x) = -\sqrt[4]{x-1} + 3$

11.
$$f(x) = \sqrt[4]{x}$$
; $g(x) = -\sqrt[4]{x-1} + 3$ **12.** $f(x) = \sqrt[5]{x}$; $g(x) = \sqrt[5]{-243x} - 2$

In Exercises 13-15, use a graphing calculator to graph the function. Then identify the domain and range of the function.

13.
$$g(x) = \sqrt[3]{2x^2 - 3x}$$

13.
$$g(x) = \sqrt[3]{2x^2 - 3x}$$
 14. $f(x) = \sqrt{\frac{1}{3}x^2 - x + 2}$ **15.** $h(x) = \sqrt[3]{3x^2 - 6x + 2}$

15.
$$h(x) = \sqrt[3]{3x^2 - 6x + 2}$$

In Exercises 16 and 17, write a rule for g described by the transformations of the graph of f.

- **16.** Let g be a horizontal stretch by a factor of 2, followed by a translation 2 units up of the graph of $f(x) = \sqrt{3x}$
- **17.** Let g be a translation 1 unit up and 4 units left, followed by a reflection in the y-axis of the graph of $f(x) = \sqrt{-x} - \frac{1}{2}$.

In Exercises 18 and 19, use a graphing calculator to graph the equation of the parabola. Identify the vertex and the direction that the parabola opens.

18.
$$3y^2 + 5 = x$$

19.
$$x - 3 = -\frac{1}{2}y^2$$

In Exercises 20 and 21, use a graphing calculator to graph the equation of the circle. Identify the center, radius, and intercepts.

20.
$$y^2 = 81 - (x + 3)^2$$

21.
$$x^2 + y^2 + 8y + 15 = 0$$