\qquad
\qquad

4.3
 Practice A

In Exercises 1-6, graph the function. Identify the domain and range of the function.

1. $g(x)=\sqrt{x}+4$
2. $h(x)=\sqrt{x}-2$
3. $f(x)=-\sqrt[3]{4 x}$
4. $h(x)=\sqrt[3]{-2 x}$
5. $f(x)=\frac{1}{3} \sqrt{x-2}$
6. $g(x)=\frac{1}{4} \sqrt{x+5}$

In Exercises 7-12, describe the transformation of f represented by g. Then graph each function.
7. $f(x)=\sqrt{x} ; g(x)=\sqrt{x-1}+4$
8. $f(x)=\sqrt{x} ; g(x)=3 \sqrt{x+2}$
9. $f(x)=\sqrt[3]{x} ; g(x)=-2 \sqrt[3]{x}$
10. $f(x)=\sqrt[3]{x} ; g(x)=\sqrt[3]{x-1}+3$
11. $f(x)=x^{1 / 2} ; g(x)=3(-x)^{1 / 2}$
12. $f(x)=x^{1 / 3} ; g(x)=-\frac{1}{3} x^{1 / 3}$

In Exercises 13-15, use a graphing calculator to graph the function. Then identify the domain and range of the function.
13. $f(x)=\sqrt{x^{2}-x}$
14. $g(x)=\sqrt[3]{x^{2}-x}$
15. $h(x)=\sqrt[3]{2 x^{2}+3 x}$

In Exercises 16 and 17, write a rule for g described by the transformations of the graph of f.
16. Let g be a vertical shrink by a factor of $\frac{1}{3}$, followed by a translation 3 units right of the graph of $f(x)=\sqrt{x+5}$.
17. Let g be a reflection in the x-axis, followed by a translation 2 units down of the graph of $f(x)=5 \sqrt{x}+3$.

In Exercises 18 and 19, use a graphing calculator to graph the equation of the parabola. Identify the vertex and the direction that the parabola opens.
18. $\frac{1}{2} y^{2}=x$
19. $-3 y^{2}=x+6$

In Exercises 20 and 21, use a graphing calculator to graph the equation of the circle. Identify the center, radius, and intercepts.
20. $x^{2}+y^{2}=16$
21. $25-(y-2)^{2}=x^{2}$

