Multiply and Divide Complex Numbers.

Multiplying complex numbers is similar to multiplying polynomials.
EXAMPLE 4 Find each product. Write each result in the form $a+b i$. a. $5 i(4-i)$
b. $(2+5 i)(6+4 i) \quad$ c. $(3+5 i)(3-5 i)$

Strategy We will use the distributive property or the FOIL method to find the products.
Why We perform the indicated operations as if the complex numbers were polynomials with i as a variable.

Solution
$\begin{aligned} \text { a. } \begin{aligned} 5 i(4-i) & =\mathbf{5 i} \cdot \mathbf{4}-\mathbf{5 i} \cdot \boldsymbol{i} & & \text { Distribute the multiplication by } 5 i . \\ & =20 i-5 \boldsymbol{i}^{2} & & \\ & =20 i-5(-\mathbf{1}) & & \text { Replace } i^{2} \text { with }-1 . \\ & =20 i+5 & & \text { Write the result in the form a }+b i .\end{aligned} \quad . \quad \text {. } & =5+20 i \quad & & \end{aligned}$
b. $(2+5 i)(6+4 i)=12+8 i+30 i+20 i^{2}$ Use the FOIL method.

$$
\begin{array}{lr}
=12+38 i+20(-1) & 8 i+30 i=38 i . \text { Replace } i^{2} \text { with }-1 . \\
=12+38 i-20 & \\
=-8+38 i & \text { Subtract: } 12-20=-8 .
\end{array}
$$

$\rightarrow \mathrm{F} \quad 0 \quad 1 \quad \mathrm{~L}$
c. $(3+5 i)(3-5 i)=9-15 i+15 i-25 i^{2}$ Use the FOIL method.
$=9-25(-1) \quad$ Add: $-15 i+15 i=0$. Replace i^{2} with -1.
$=9+25$
$=34$
Written in the form $a+b i$, the product is $34+0 i$.
Self Check 4 Find the product. Write each result in the form $a+b i$:
a. $4 i(3-9 i)$
b. $(3-2 i)(5-4 i)$
c. $(2+6 i)(2-6 i)$

Now Try Problems 43 and 45
In Example 4c, we saw that the product of the imaginary numbers $3+5 i$ and $3-5 i$ is the real number 34 . We call $3+5 i$ and $3-5 i$ complex conjugates of each other.

Complex Conjugates

Success Tip

To find the conjugate of a complex number, write it in standard form and change the sign between the real and imaginary parts from + to - or from - to + .

The complex numbers $a+b i$ and $a-b i$ are called complex conjugates.

For example,

- $7+4 i$ and $7-4 i$ are complex conjugates.
- $5-i$ and $5+i$ are complex conjugates.
- $-6 i$ and $6 i$ are complex conjugates, because $-6 i=0-6 i$ and $6 i=0+6 i$.

In general, the product of the complex number $a+b i$ and its complex conjugate $a-b i$ is the real number $a^{2}+b^{2}$, as the following work shows:

$$
\begin{aligned}
(a+b i)(a-b i) & =a^{2}-a b i+a b i-b^{2} i^{2} & & \text { Use the FOIL method. } \\
& =a^{2}-b^{2}(-1) & & \text { Add: }-a b i+a b i=0 . \text { Replace } i^{2} \text { with }-1 . \\
& =a^{2}+b^{2} & &
\end{aligned}
$$

We can use this fact when dividing by a complex number. The process that we use is similar to rationalizing denominators.

The Language of Algebra

Recall that the word conjugate was used in Chapter 8 when we rationalized the denominators of radical expressions such as $\frac{5}{\sqrt{6}-1}$.

Caution

A common mistake is to replace i with -1 . Remember, $i \neq-1$. By definition, $i=\sqrt{-1}$ and $i^{2}=-1$.

Notation

It is acceptable to use $a-b i$ as a substitute for the form $a+(-b) i$. In Example 5b, we write $1-i$ instead of $1+(-1) i$.

Solution

Write each quotient in the form $a+b i: \begin{array}{lll}\text { a. } \frac{6}{7-4 i} & \text { b. } \frac{3-i}{2+i}\end{array}$
Strategy We will build each fraction by multiplying it by a form of 1 that uses the conjugate of the denominator.

Why This step produces a real number in the denominator so that the result can then be written in the form $a+b i$.
a. We want to build a fraction equivalent to $\frac{6}{7-4 i}$ that does not have i in the denominator. To make the denominator, $7-4 i$, a real number, we need to multiply it by its complex conjugate, $7+4 i$. It follows that $\frac{7+4 i}{7+4 i}$ should be the form of 1 that is used to build $\frac{6}{7-4 i}$.

$$
\begin{array}{rlrl}
\frac{6}{7-4 i} & =\frac{6}{7-4 i} \cdot \frac{7+4 i}{7+4 i} & & \text { To build an equivalent fraction, multiply by } \frac{7+4 i}{7+4 i}=1 . \\
& =\frac{42+24 i}{49-16 i^{2}} & & \begin{array}{l}
\text { To multiply the numerators, distribute the multiplication by } 6 . \\
\text { To multiply the denominators, find }(7-4 i)(7+4 i) .
\end{array} \\
& =\frac{42+24 i}{49-16(-1)} & & \text { Replace } i^{2} \text { with -1. The denominator no longer contains } i . \\
& =\frac{42+24 i}{49+16} & & \text { Simplify the denominator. } \\
& =\frac{42+24 i}{65} & \begin{array}{l}
\text { This notation represents the sum of two fractions } \\
\text { that have the common denominator } 65: \frac{42}{65} \text { and } \frac{24 i}{65} .
\end{array} \\
& =\frac{42}{65+\frac{24}{65} i} \quad \begin{array}{l}
\text { Write the result in the form a }+ \text { bi. }
\end{array}
\end{array}
$$

b. We can make the denominator of $\frac{3-i}{2+i}$ a real number by multiplying it by the complex conjugate of $2+i$, which is $2-i$.

$$
\begin{aligned}
\frac{3-i}{2+i} & =\frac{3-i}{2+i} \cdot \frac{2-i}{2-i} & & \text { To build an equivalent fraction, multiply by } \frac{2-i}{2-i}=1 . \\
& =\frac{6-3 i-2 i+i^{2}}{4-i^{2}} & & \begin{array}{l}
\text { To multiply the numerators, find }(3-i)(2-i) . \\
\text { To multiply the denominators, find }(2+i)(2-i) .
\end{array} \\
& =\frac{6-5 i+(-1)}{4-(-1)} & & \text { Replace } i^{2} \text { with -1. The denominator no longer contains } i . \\
& =\frac{5-5 i}{5} & & \text { Simplify the numerator and the denominator. } \\
& =\frac{5}{5}-\frac{5 i}{5} & & \text { Write each term of the numerator over the denominator, } 5 . \\
& =1-i & & \text { Simplify each fraction. }
\end{aligned}
$$

Self Check 5 Write each quotient in standard form
b. $\frac{5-3 i}{4+2 i}$

Now Try Problems 49 and 53

Perform the operations. Write all answers in the form $a+b i$. See Example 4.
41. 3(2-i)
43. $-5 i(5-5 i)$
45. $(3-2 i)(2+3 i)$
47. $(4+i)(3-i)$

Write each quotient in the form a + bi. See Example 5.
49. $\frac{5}{2-i}$
50. $\frac{26}{3-2 i}$
51. $\frac{-4 i}{7-2 i}$
53. $\frac{2+3 i}{2-3 i}$
55. $\frac{4-3 i}{7-i}$
52. $\frac{5 i}{6+2 i}$
54. $\frac{2-5 i}{2+5 i}$
56. $\frac{4+i}{4-i}$

