\qquad
\qquad DATE \qquad

Reteaching
 9.5 Hyperbolas

Skill A Writing an equation for a graphed hyperbola
Recall Hyperbola with a horizontal transverse axis:

$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
\end{aligned}
$$

Hyperbola with a vertical transverse axis:

- Example

For the graph at right, write an equation for
a. the hyperbola.
b. each asymptote.

- Solution

a. The center is at $(h, k)=(0,2)$.

Since the transverse axis is horizontal,

$$
\frac{(x-0)^{2}}{a^{2}}-\frac{(y-2)^{2}}{b^{2}}=1 .
$$

This implies that a is the horizontal distance from the center to the vertices, so $a=2$.
This leaves $b=3$ as the vertical distance from the center to the edge of the "rectangle."
The equation of the hyperbola is

$$
\frac{x^{2}}{4}-\frac{(y-2)^{2}}{9}=1
$$

Write the standard equation for each hyperbola and give the equations for the asymptotes.
1.

2.

\qquad
\qquad
3.

\qquad
\qquad
-Skill B Graphing a hyperbola from its equation
Recall Drawing a rectangle and asymptotes can help you draw a hyperbola, but they are really not part of the graph of the hyperbola.

- Example

Sketch a graph of $\frac{(y-1)^{2}}{16}-\frac{(x+2)^{2}}{9}=1$.

- Solution

Use one of the standard forms to identify h, k, a, and b.
Since the y-term is positive, the form is

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

where $h=-2, k=1, a=4$, and $b=3$.
Mark the center $(-2,1)$ and sketch a rectangle by moving 4 units above and below the center and 3 units to the left and to the right of the center.

Draw the diagonals of the rectangle and extend them to form the asymptotes.

Since the \mathbf{y}-term is positive, sketch the two branches above and below the center.

Graph each hyperbola.

4. $\frac{y^{2}}{25}-\frac{x^{2}}{4}=1$

5. $\frac{(x+1)^{2}}{16}-\frac{(y-2)^{2}}{9}=1$

6. $x^{2}-y^{2}+6 x+10 y-17=0$

