$\qquad$
$\qquad$ DATE $\qquad$

## Reteaching <br> 9.4 Ellipses

Skill A Writing an equation for a graphed ellipse
$\left.\begin{array}{ll}\text { Recall } & \text { Ellipse with a horizontal major axis: } \\ & \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \\ & \text { Ellipse with a vertical major axis: } \\ & \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1\end{array}\right\}$ where $a^{2}>b^{2}$ In both cases, the center is at ( $h, k$ ).

## - Example

Write the standard equation for the ellipse shown at right.

## - Solution

The center is at $(-1,2)$, so $h=-1$ and $k=2$.
The major axis is 6 units long, so $a=\frac{6}{2}=3$.
The minor axis is 4 units long, so $b=\frac{4}{2}=2$.
Since the major axis is vertical:

$$
\frac{(x-(-1))^{2}}{2^{2}}+\frac{(y-2)^{2}}{3^{2}}=1
$$

The equation is $\frac{(x+1)^{2}}{4}+\frac{(y-2)^{2}}{9}=1$.


## Write the standard equation for each ellipse below.

1. 


2.

3.

$\qquad$
$\qquad$
$\qquad$

Skill B Identifying the center, foci, vertices, and co-vertices of an ellipse
Recall The foci are on the major axis at a distance $c$ from the center, where $c=\sqrt{a^{2}-b^{2}}$.

## - Example

Find the coordinates of the center, foci, vertices, and co-vertices for the ellipse $x^{2}+9 y^{2}-4 x+18 y+4=0$.
$\qquad$

## - Solution

$$
\begin{aligned}
x^{2}-4 x+-9\left(y^{2}+2 y+\ldots\right) & =-4 & & \\
x^{2}-4 x+4+9\left(y^{2}+2 y+1\right) & =-4+4+9 \cdot 1 & & \text { Complete the squares. } \\
(x-2)^{2}+9(y+1)^{2} & =9 & & \\
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{1} & =1 & & \text { Standard Form } \\
h=2, k=-1, a=3, b=1, c & =\sqrt{3^{2}-1^{2}}=\sqrt{8} & & \text { (Recall that } \left.a^{2}>b^{2} .\right)
\end{aligned}
$$

Therefore, the center is at $(2,-1)$.
Since $a^{2}$ is in the $x$-term, the major axis is horizontal.
The foci are at a horizontal distance $c$ from the center:

$$
(2+\sqrt{8},-1) \approx(4.8,-1) \text { and }(2-\sqrt{8},-1) \approx(-0.8,-1)
$$

The vertices are at a horizontal distance $a$ from the center: $(-1,-1)$ and $(5,-1)$. The co-vertices are at a vertical distance $b$ from the center: $(2,0)$ and $(2,-2)$.

Find the coordinates of the center, foci, vertices, and co-vertices of each ellipse.
4. $\frac{x^{2}}{16}+\frac{(y-2)^{2}}{36}=1$
5. $9 x^{2}+25 y^{2}=225$
-Skill C Graphing an ellipse from its equation
Recall To sketch a graph of any conic, write its equation in standard form.

- Example

Sketch a graph of $\frac{(x+2)^{2}}{9}+\frac{y^{2}}{25}=1$.
-Solution
The center is at $(-2,0)$. Since 9 is in the $x$-term, mark points at a distance $\sqrt{9}=3$
horizontally from the center; $(-5,0)$ and $(1,0)$ are the vertices.
Since 25 is in the $y$-term, mark points at a distance $\sqrt{25}=5$ vertically from the center; $(-2,5)$ and $(-2,-5)$ are the co-vertices.


## Sketch the graph of each ellipse.

6. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

7. $25 x^{2}+(y+1)^{2}=25$

