\qquad

2.1 Practice B

In Exercises 1-3, find the degree of the monomial.

1. $-3.25 n^{8}$
2. $\frac{1}{5} x^{4} y z^{2}$
3. $u v^{3} w^{9}$

In Exercises 4-6, write the polynomial in standard form. Identify the degree and

 leading coefficient of the polynomial. Then classify the polynomial by the number of terms.4. $3 t-8 t^{2}+10 t^{5}$
5. $\frac{2}{9} n^{2}-\pi n+3 n^{4}$
6. $\sqrt{14} p^{5}$
7. The monthly profit for a small company is represented by $250 x^{5}-42 x^{2}+112 x$, where x is the number of beds sold. Classify the polynomial by the number of terms. What is its degree?

In Exercises 8-11, find the sum.

8. $\left(-2 t^{2}-7 t+5\right)+\left(-8 t^{2}+4 t-3\right)$
9. $\left(8 y^{2}-2 y+4\right)+\left(5 y^{2}-7 y\right)$
10. $\left(3 k-5 k^{3}+9\right)+\left(8 k^{3}-4 k+8\right)$
11. $\left(3 q^{2}-7 q-6\right)+\left(2 q^{2}-5 q^{3}+8 q\right)$

In Exercises 12-15, find the difference.

12. $\left(t^{3}-5 t^{2}-7\right)-(t-11)$
13. $(-w-13)-\left(-3 w^{3}+w^{2}+6 w\right)$
14. $\left(x^{4}-x^{2}+9\right)-\left(13-6 x^{2}+8 x\right)$
15. $\left(3 g-5 g^{3}+6 g^{2}\right)-\left(12 g^{3}+9 g-10\right)$
16. The number of economy-size cars rented in w weeks is represented by $152+3 w$. The number of full-size cars rented in w weeks is represented by $99+2 w$. Write a polynomial that represents how many more economy cars are rented in w weeks than full-size cars.

In Exercises 17 and 18, find the sum or difference.

17. $\left(g^{2}-9 h^{2}\right)+\left(g^{2}-15 g h+8 h^{2}\right)$
18. $\left(-m^{2}-5 m n\right)-\left(m^{2}+3 m n-9 n^{2}\right)$
19. The polynomial $-16 t^{2}+v_{0} t+s_{0}$ represents the height (in feet) of an object, where v_{0} is the initial vertical velocity (in feet per second), s_{0} is the initial height of the object (in feet), and t is the time (in seconds). Write a polynomial that represents the height of an object that has initial velocity 25 feet per second and initial height 4 feet. Then find the height of the object after 1 second.
