\qquad
\qquad

4.2
 Practice A

In Exercises 1 and 2, use the graph to solve the equation.

1. $-x^{2}-3 x+4=0$

2. $x^{2}-7 x+10=0$

In Exercises 3-5, write the equation in standard form.
3. $3 x^{2}=15$
4. $-x^{2}=-14$
5. $4 x-2 x^{2}=5$

In Exercises 6-11, solve the equation by graphing.
6. $x^{2}+3 x=0$
7. $x^{2}+2 x+1=0$
8. $x^{2}-3 x+6=0$
9. $x^{2}-4 x-5=0$
10. $-x^{2}=7 x+18$
11. $x^{2}=-2 x+3$
12. The height y (in feet) of a toss in bocce ball can be modeled by $y=-x^{2}+4 x$, where x is the horizontal distance (in feet).
a. Interpret the x-intercepts of the graph of the equation.
b. How far away does the bocce ball land on the ground?

In Exercises 13-15, solve the equation by using Method 2 from Example 3.
13. $x^{2}=4 x+12$
14. $8 x-15=x^{2}$
15. $x^{2}+9 x=10$

In Exercises 16-19, graph the function. Approximate the zeros of the function to the nearest tenth when necessary.
16. $f(x)=x^{2}-3 x+1$
17. $f(x)=-x^{2}+8 x-6$
18. $y=\frac{1}{3} x^{2}+2 x-4$
19. $y=-2 x^{2}+3 x-2$
20. The area (in square feet) of an x-foot-wide sidewalk can be modeled by $y=-0.002 x^{2}+0.006 x$. Find the width of the sidewalk to the nearest foot.

