6 х

In Exercises 1 and 2, use the graph to solve the equation.

In Exercises 3–5, write the equation in standard form.

3.
$$3x^2 = 15$$
 4. $-x^2 = -14$ **5.** $4x - 2x^2 = 5$

In Exercises 6–11, solve the equation by graphing.

6.
$$x^2 + 3x = 0$$
7. $x^2 + 2x + 1 = 0$ 8. $x^2 - 3x + 6 = 0$ 9. $x^2 - 4x - 5 = 0$ 10. $-x^2 = 7x + 18$ 11. $x^2 = -2x + 3$

12. The height y (in feet) of a toss in bocce ball can be modeled by $y = -x^2 + 4x$, where x is the horizontal distance (in feet).

- **a.** Interpret the *x*-intercepts of the graph of the equation.
- **b.** How far away does the bocce ball land on the ground?

In Exercises 13–15, solve the equation by using Method 2 from Example 3.

14. $8x - 15 = x^2$ **15.** $x^2 + 9x = 10$ **13.** $x^2 = 4x + 12$

In Exercises 16–19, graph the function. Approximate the zeros of the function to the nearest tenth when necessary.

- **16.** $f(x) = x^2 3x + 1$ **17.** $f(x) = -x^2 + 8x - 6$ **18.** $y = \frac{1}{3}x^2 + 2x - 4$ **19.** $y = -2x^2 + 3x - 2$
- **20.** The area (in square feet) of an *x*-foot-wide sidewalk can be modeled by $y = -0.002x^2 + 0.006x$. Find the width of the sidewalk to the nearest foot.