\qquad

1.4 Practice B

In Exercises 1-10, solve the equation. Graph the solution(s), if possible.

1. $|p-3|=10$
2. $|6 f|=-2$
3. $|-a+2|+9=6$
4. $-4|5 g-12|=-12$
5. $3|2 d-6|+2=2$
6. $|-2 k|=6$
7. $\left|\frac{q}{5}\right|=3$
8. $3|4-3 m|=30$
9. $|x-3|+9=30$
10. $7|2 c-6|+4=32$
11. A company manufactures penny number 2 nails that are 1 inch in length.

The actual length is allowed to vary by up to $\frac{1}{32}$ inch.
a. Write and solve an absolute value equation to find the minimum and maximum acceptable nail length.
b. A penny number 2 nail is 1.05 inches long. Is the nail acceptable? Explain.

In Exercises 12-14, write an absolute value equation that has the given solutions.

12. 3 and 9
13. -5 and 15
14. 4 and 11

In Exercises 15-20, solve the equation. Check your solutions.
15. $|9 w-4|=|2 w+10|$
16. $2|n+7|=|4 n+8|$
17. $3|3 t+1|=2|6 t+3|$
18. $|5 r+3|=2 r$
19. $|j-5|=|j+9|$
20. $|2 k+4|=|2 k+3|$
21. You conduct a random survey of your small town about having a community garage sale. Of those surveyed, 56% are in favor and 44% are opposed. The actual percent could be 5% more or 5% less than the acquired results.
a. Write and solve an absolute value equation to find the least and greatest percents of your town population that could be opposed to a community garage sale.
b. A friend claims that half the town is actually opposed to a community garage sale. Does this statement conflict with the survey data? Explain.

